资源类型

期刊论文 1202

会议视频 70

会议信息 3

会议专题 1

年份

2024 3

2023 98

2022 145

2021 123

2020 92

2019 71

2018 89

2017 53

2016 46

2015 69

2014 51

2013 52

2012 44

2011 55

2010 50

2009 48

2008 48

2007 33

2006 13

2005 11

展开 ︾

关键词

能源 52

可持续发展 12

核能 11

可再生能源 10

节能 10

碳中和 9

能源安全 6

2035 4

新能源 4

氢能 4

燃料电池 4

能源战略 4

能源结构 4

能源转型 4

能源革命 4

节能减排 4

节能环保 4

中长期 3

太阳能 3

展开 ︾

检索范围:

排序: 展示方式:

Redox flow batteries—Concepts and chemistries for cost-effective energy storage

Matthäa Verena HOLLAND-CUNZ, Faye CORDING, Jochen FRIEDL, Ulrich STIMMING

《能源前沿(英文)》 2018年 第12卷 第2期   页码 198-224 doi: 10.1007/s11708-018-0552-4

摘要: Electrochemical energy storage is one of the few options to store the energy from intermittent renewable energy sources like wind and solar. Redox flow batteries (RFBs) are such an energy storage system, which has favorable features over other battery technologies, e.g. solid state batteries, due to their inherent safety and the independent scaling of energy and power content. However, because of their low energy-density, low power-density, and the cost of components such as redox species and membranes, commercialised RFB systems like the all-vanadium chemistry cannot make full use of the inherent advantages over other systems. In principle, there are three pathways to improve RFBs and to make them viable for large scale application: First, to employ electrolytes with higher energy density. This goal can be achieved by increasing the concentration of redox species, employing redox species that store more than one electron or by increasing the cell voltage. Second, to enhance the power output of the battery cells by using high kinetic redox species, increasing the cell voltage, implementing novel cell designs or membranes with lower resistance. The first two means reduce the electrode surface area needed to supply a certain power output, thereby bringing down costs for expensive components such as membranes. Third, to reduce the costs of single or multiple components such as redox species or membranes. To achieve these objectives it is necessary to develop new battery chemistries and cell configurations. In this review, a comparison of promising cell chemistries is focused on, be they all-liquid, slurries or hybrids combining liquid, gas and solid phases. The aim is to elucidate which redox-system is most favorable in terms of energy-density, power-density and capital cost. Besides, the choice of solvent and the selection of an inorganic or organic redox couples with the entailing consequences are discussed.

关键词: electrochemical energy storage     redox flow battery     vanadium    

A valveless piezoelectric pump with novel flow path design of function of rectification to improve energy

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0685-3

摘要: Existing valveless piezoelectric pumps are mostly based on the flow resistance mechanism to generate unidirectional fluid pumping, resulting in inefficient energy conversion because the majority of mechanical energy is consumed in terms of parasitic loss. In this paper, a novel tube structure composed of a Y-shaped tube and a ȹ-shaped tube was proposed considering theory of jet inertia and vortex dissipation for the first time to improve energy efficiency. After verifying its feasibility through the flow field simulation, the proposed tubes were integrated into a piezo-driven chamber, and a novel valveless piezoelectric pump with the function of rectification (NVPPFR) was reported. Unlike previous pumps, the reported pump directed the reflux fluid to another flow channel different from the pumping fluid, thus improving pumping efficiency. Then, mathematical modeling was established, including the kinetic analysis of vibrator, flow loss analysis of fluid, and pumping efficiency. Eventually, experiments were designed, and results showed that NVPPFR had the function of rectification and net pumping effect. The maximum flow rate reached 6.89 mL/min, and the pumping efficiency was up to 27%. The development of NVPPFR compensated for the inefficiency of traditional valveless piezoelectric pumps, broadening the application prospect in biomedicine and biology fields.

关键词: composite tube     valveless piezoelectric pump     rectification     energy efficiency    

Impact force detection using an energy flow estimator with piezoelectric sensors

Xingjun WANG, Daniel GUYOMAR, Kaori YUSE, Mickaël LALLART, Lionel PETIT,

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 194-203 doi: 10.1007/s11465-010-0004-2

摘要: Currently, there are numerous methods for estimating impact locations. One is to find more detailed information because the system becomes complicated. Another method is to reduce energy, for which various autonomic energy harvesting methods have been developed. However, the occupied energy is still small. This paper proposes a simple, rapid, and low-powered impact estimation method based on energy flow direction estimation through a pair of piezoelectric sensors. The estimation energy flow is expressed by a Poynting vector subsequently linked to piezoelectric sensor voltage outputs. The presented approach is verified by numerical simulations and experiments.

关键词: impact detection     energy flow     piezoelectric sensor     thin plate    

Minimization of total energy consumption in an m-machine flow shop with an exponential time-dependent

Lingxuan LIU, Zhongshun SHI, Leyuan SHI

《工程管理前沿(英文)》 2018年 第5卷 第4期   页码 487-498 doi: 10.15302/J-FEM-2018042

摘要:

This study investigates an energy-aware flow shop scheduling problem with a time-dependent learning effect. The relationship between the traditional and the proposed scheduling problem is shown and objective is to determine a job sequence in which the total energy consumption is minimized. To provide an efficient solution framework, composite lower bounds are proposed to be used in a solution approach with the name of Bounds-based Nested Partition (BBNP). A worst-case analysis on shortest process time heuristic is conducted for theoretical measurement. Computational experiments are performed on randomly generated test instances to evaluate the proposed algorithms. Results show that BBNP has better performance than conventional heuristics and provides considerable computational advantage.

关键词: flow shop     energy-aware scheduling     learning effect     nested partition     worst-case error bound    

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redox flow

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1221-1230 doi: 10.1007/s11705-023-2298-8

摘要: The vanadium redox flow battery with a safe and capacity-controllable large-scale energy storage system offers a new method for the sustainability. In this case, acetic acid, methane sulfonic acid, sulfonic acid, amino methane sulfonic acid, and taurine are used to overcome the low electrolyte energy density and stability limitations, as well as to investigate the effects of various organic functional groups on the vanadium redox flow battery. When compared to the pristine electrolyte (0.22 Ah, 5.0 Wh·L–1, 85.0%), the results show that taurine has the advantage of maintaining vanadium ion concentrations, discharge capacity (1.43 Ah), energy density (33.9 Wh·L–1), and energy efficiency (90.5%) even after several cycles. The acetic acid electrolyte is more conducive to the low-temperature stability of the V(II) electrolyte (177 h at −25 °C) than pristine (82 h at −2 °C). The –SO3H group, specifically the coaction of the –NH2 and –SO3H groups, improves electrolyte stability. The –NH2 and –COOH additive groups improved conductivity and electrochemical activity.

关键词: vanadium redox flow battery     functional groups     organic additives     energy density     stability    

Theoretical study on flow and radiation in tubular solar photocatalytic reactor

《能源前沿(英文)》 2021年 第15卷 第3期   页码 687-699 doi: 10.1007/s11708-021-0773-9

摘要: In this paper, based on the mixture flow model, an optimized six-flux model is first established and applied to the tubular solar photocatalytic reactor. Parameters influencing photocatalyst distribution and radiation distribution at the reactor outlet, viz. catalyst concentration and circulation speed, are also analyzed. It is found that, at the outlet of the reactor, the optimized six-flux model has better performances (the energy increase by 1900% and 284%, respectively) with a higher catalyst concentration (triple) and a lower speed (one third).

关键词: photocatalytic hydrogen photoreactor     nume- rical simulation     solar energy     flow model     radiation model    

Optimal operation of integrated energy system including power thermal and gas subsystems

《能源前沿(英文)》 2022年 第16卷 第1期   页码 105-120 doi: 10.1007/s11708-022-0814-z

摘要: As a form of hybrid multi-energy systems, the integrated energy system contains different forms of energy such as power, thermal, and gas which meet the load of various energy forms. Focusing mainly on model building and optimal operation of the integrated energy system, in this paper, the dist-flow method is applied to quickly calculate the power flow and the gas system model is built by the analogy of the power system model. In addition, the piecewise linearization method is applied to solve the quadratic Weymouth gas flow equation, and the alternating direction method of multipliers (ADMM) method is applied to narrow the optimal results of each subsystem at the coupling point. The entire system reaches its optimal operation through multiple iterations. The power-thermal-gas integrated energy system used in the case study includes an IEEE-33 bus power system, a Belgian 20 node natural gas system, and a six node thermal system. Simulation-based calculations and comparison of the results under different scenarios prove that the power-thermal-gas integrated energy system enhances the flexibility and stability of the system as well as reducing system operating costs to some extent.

关键词: integrated energy system     power-to-gas     dist-flow     piecewise linearization     alternating direction method of multipliers (ADMM)    

多孔介质多相流动在能源转型中的应用

Martin J. Blunt, 林青阳

《工程(英文)》 2022年 第14卷 第7期   页码 10-14 doi: 10.1016/j.eng.2021.08.008

复杂耦合系统的统计能量分析及其应用

盛美萍

《中国工程科学》 2002年 第4卷 第6期   页码 77-84

摘要:

文章综合导纳分析法、经典统计能量分析方法和经典功率流理论的各自优点,提出适合复杂耦合系统的统计能量分析方法,为研究实际机械结构之间的振动传递规律、复杂机械系统的声辐射特性提供理论依据,为实际工程结构的振动隔离、噪声治理提供理论指导。文章首次提出统计能量分析参数必须统一定义,将影响实际机械结构相互之间能量传递的若干要素各自分离,并引入相应的参数分别开展研究。利用理论研究的成果,发展后的统计能量分析首次应用于水下航行器振动和噪声特性分析,预报了水下航行器的振动传递规律和辐射噪声级。理论分析与实验测试结果符合较好。文章指出了水下航行器噪声治理的方向。

关键词: 功率流     统计能量分析     导纳     耦合    

用于固定式大规模储能的液流电池

尹彦斌, 李先锋

《工程(英文)》 2023年 第21卷 第2期   页码 42-44 doi: 10.1016/j.eng.2022.10.007

Numerical study of internal flow field and flow passage improvement of an inlet particle separator

Florian PAOLI, Tong WANG

《能源前沿(英文)》 2011年 第5卷 第4期   页码 386-397 doi: 10.1007/s11708-011-0156-8

摘要: By performing gas flow field numerical simulations for several inlet Reynolds numbers (from 2 × 10 to 9 × 10 ) and byflow ratios (from 10% to 20%), the present study has proposed to improve the flow passage of an inlet particle separator. An adjacent objective of the study is to lower pressure losses of the inlet particle separator (IPS). No particle has been included in the gas flow for a -epsilon turbulence model. The velocity distribution in different sections and the pressure coefficient along the duct have been analyzed, which indicates that there exist important low-velocity regions and vortices in the separation area. Therefore, the profile of streamlines along the original passage has been considered. This profile illustrated a vacuum region in the same area. All investigations suggest that the separation area is the most critical one for fulfilling the objective on pressure losses limitation. Then the flow passage improvement method has focused on the separation area. An improved shape has been designed in order to suit smoothly to the streamlines in this region. Similar numerical studies as those for the original shape have been conducted on this improved shape, confirming some considerable enhancements compared with the original shape. The significant vortices which appear in the original shape reduce in amount and size. Besides, pressure losses are greatly decreased in both outlets (up to 30% for high Reynolds number) and the flow is uniform at the main outlet. Subsequent engineering surveys could rely on expressions obtained for in both outlets which extend the pressure losses for a wide range of inlet Reynolds numbers. As a result, the numerical calculations demonstrate that the flow passage improvement method applied in this study has succeeded in designing a shape which enhances the flow behavior.

关键词: streamlines     pressure losses     flow passage improvement     inlet particle separator (IPS)    

储能在大规模气流床煤气化的应用展望

沈中杰, 李俊国, 刘海峰

《工程(英文)》 2023年 第29卷 第10期   页码 50-54 doi: 10.1016/j.eng.2023.08.009

Review of stochastic optimization methods for smart grid

S. Surender REDDY, Vuddanti SANDEEP, Chan-Mook JUNG

《能源前沿(英文)》 2017年 第11卷 第2期   页码 197-209 doi: 10.1007/s11708-017-0457-7

摘要: This paper presents various approaches used by researchers for handling the uncertainties involved in renewable energy sources, load demands, etc. It gives an idea about stochastic programming (SP) and discusses the formulations given by different researchers for objective functions such as cost, loss, generation expansion, and voltage/V control with various conventional and advanced methods. Besides, it gives a brief idea about SP and its applications and discusses different variants of SP such as recourse model, chance constrained programming, sample average approximation, and risk aversion. Moreover, it includes the application of these variants in various power systems. Furthermore, it also includes the general mathematical form of expression for these variants and discusses the mathematical description of the problem and modeling of the system. This review of different optimization techniques will be helpful for smart grid development including renewable energy resources (RERs).

关键词: renewable energy sources     stochastic optimization     smart grid     uncertainty     optimal power flow (OPF)    

Comparison of evapotranspiration and energy partitioning related to main biotic and abiotic controllers

Lei GAO, Peng ZHAO, Shaozhong KANG, Sien LI, Ling TONG, Risheng DING, Hongna LU

《农业科学与工程前沿(英文)》 2020年 第7卷 第4期   页码 490-504 doi: 10.15302/J-FASE-2019310

摘要:

Knowledge of evapotranspiration (ET) and energy partitioning is useful for optimizing water management, especially in areas where water is scarce. A study was undertaken in a furrow-irrigated vineyard (2015) and a drip-irrigated vineyard (2017) in an arid region of north-west China to compare vineyard ET and energy partitioning and their responses to soil water content (SWC) and leaf area index (LAI). ET and soil evaporation (E) and transpiration (T) were determined using eddy covariance, microlysimeters, and sap flow. Seasonal average E/ET, T/ET, crop coefficient (Kc), evaporation coefficient (Ke), and basal crop coefficient (Kcb) were 0.50, 0.50, 0.67, 0.35, and 0.29, respectively, in the furrow-irrigated vineyard and 0.42, 0.58, 0.57, 0.29, and 0.43 in the drip-irrigated vineyard. The seasonal average partitioning of net radiation (Rn) into the latent heat flux (LE), sensible heat flux (H) and soil heat flux (G) (LE/Rn, H/Rn, and G/Rn), evaporative fraction (EF) and Bowen ratio (β) were 0.57, 0.26, 0.17, 0.69 and 0.63, respectively, in the furrow-irrigated vineyard and 0.46, 0.36, 0.17, 0.57 and 0.97 in the drip-irrigated vineyard. The LE/Rn, H/Rn, EF, and β were linearly correlated with LAI. The E, Kc, Ke, E/ET, LE/Rn, LEs/Rn (ratio of LE by soil E to Rn), H/Rn, EF and β were closely correlated with topsoil SWC (10 cm depth). Responses of ET and energy partitioning to the LAI and SWC differed under the two irrigation methods. Drip irrigation reduced seasonal average E/ET and increased average T/ET. From the perspective of energy partitioning, seasonal average H/Rn increased whereas LE/Rn, especially LEs/Rn, decreased. Compared with furrow irrigation, drip irrigation decreased the proportion of unproductive water consumption thereby contributing to enhanced water use efficiency and accumulation of dry matter.

关键词: crop coefficient     eddy covariance     microlysimeter     sap flow     soil evaporation     transpiration    

标题 作者 时间 类型 操作

Redox flow batteries—Concepts and chemistries for cost-effective energy storage

Matthäa Verena HOLLAND-CUNZ, Faye CORDING, Jochen FRIEDL, Ulrich STIMMING

期刊论文

A valveless piezoelectric pump with novel flow path design of function of rectification to improve energy

期刊论文

Impact force detection using an energy flow estimator with piezoelectric sensors

Xingjun WANG, Daniel GUYOMAR, Kaori YUSE, Mickaël LALLART, Lionel PETIT,

期刊论文

Minimization of total energy consumption in an m-machine flow shop with an exponential time-dependent

Lingxuan LIU, Zhongshun SHI, Leyuan SHI

期刊论文

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redox flow

期刊论文

Martin Blunt:Flow in Porous Media in the Energy Transition(2022年10月12日)

2022年10月18日

会议视频

Theoretical study on flow and radiation in tubular solar photocatalytic reactor

期刊论文

Optimal operation of integrated energy system including power thermal and gas subsystems

期刊论文

多孔介质多相流动在能源转型中的应用

Martin J. Blunt, 林青阳

期刊论文

复杂耦合系统的统计能量分析及其应用

盛美萍

期刊论文

用于固定式大规模储能的液流电池

尹彦斌, 李先锋

期刊论文

Numerical study of internal flow field and flow passage improvement of an inlet particle separator

Florian PAOLI, Tong WANG

期刊论文

储能在大规模气流床煤气化的应用展望

沈中杰, 李俊国, 刘海峰

期刊论文

Review of stochastic optimization methods for smart grid

S. Surender REDDY, Vuddanti SANDEEP, Chan-Mook JUNG

期刊论文

Comparison of evapotranspiration and energy partitioning related to main biotic and abiotic controllers

Lei GAO, Peng ZHAO, Shaozhong KANG, Sien LI, Ling TONG, Risheng DING, Hongna LU

期刊论文